Double Master in Polymer Science

Polymer Physics: Structure-Properties relationship

Course coordinator: Roberto Hernandez (roberto.hernandez@ehu.eus)

European credits ECTS: 5

Teaching Language: English

Supporting files: Spanish and English

	Number of course slots (1h20)	Number of course slots (4h)
Magisterial	30	
Tutorials	4	
Practical		4+12

Description

- To get knowledge on the theory and applications of the viscoelasticity, to study the structure-properties relationships in polymers and polymer based materials
- To be able to understand and apply normalized methods for the study of the mechanical behavior and the dielectric and thermal properties of polymeric materials and multiphase polymeric systems.
- To know how to use autonomously scientific instruments used in the physical characterization of polymeric materials.

Outline

Part 1: The viscoelastic nature of polymers

1.1 Theory and applications of linear and non-linear viscoelasticity

- Basic models and experimental techniques
- Why is important viscoelasticity in polymer physics
- Polymer chains dynamics and the three viscoelastic regions
- Non-linear viscoelasticity and practical implications of rheology

1.2 Studies of the rubbery and terminal (flow) viscoelastic regions

• Crystalline and glassy states: The glassy to rubbery state transition and the free

Double Master in Polymer Science

volume

- Dynamic viscoelasticity as a main tool to investigate rubbery and terminal regions
- Reduction to only two viscoelastic regions in crosslinked polymers and polymer composites
- The role of microestructure and chain architecture in the rubbery and terminal regions
- 1.3 A rheological analysis of the terminal region: The flow of polymers in the liquid state
 - Non-newtonian (shear thinning) viscosity: chains entanglement-disentaglement process
 - Non linear viscoelasticity in flow: Elastic fluids
 - Effect of temperature and pressure on the viscosity
 - Practical cases in the framework of the correlation "Molecular parameters-Rheology-Processing"

Part 2: Solid state: advanced methods to study the mechanical properties of mono- and multi-phase polymer systems.

2.1 Composite materials

- Definition and classification
- Structure
- Matrices
- Fibers

2.2 Fiber/polymeric matrix interface

- Adhesion theories
- Glass fiber/polymer interface: coupling agents
- Other fiber/matrix interfaces
- 2.3 Mechanical properties of composites
 - Geometrical aspects
 - Stiffness
 - Strength
 - Other properties: impact strength and work of fracture, fatigue.
- 2.4 Fracture
 - Concepts of stress and strain
 - Introduction to fracture
 - Fracture in elastic systems
 - Fracture in systems with energy dissipation
 - Application of concepts of fracture mechanics in fatigue tests

Part 3: Solid state: dielectric and thermal behavior of polymeric materials

- 3.1. Electrical properties of polymeric materials
 - 3.1.1 The dielectric response and broadband dielectric spectroscopy.
 - Response functions
 - Specific Relaxation Processes: local processes, the α-relaxation, the normal mode, relaxation of partially crystalline materials.
 - 3.1.2 Semiconducting polymers
 - Conjugated polymers (generalities)
 - Electrooptic activity
 - Applications: Organic solar cells and field effect transistors
- 3.2. Thermal behaviour of polymer materials

•

