Double Master in Polymer Science

Polymer Reaction Engineering

Course coordinator: Prof. Jose Ramon Leiza (<u>irleiza@ehu.eus</u>), Aitor Barquero (<u>aitor.barquero@ehu.eus</u>), Miren Aguirre (<u>miren.aguirre@ehu.eus</u>)

European credits ECTS: 5

Teaching Language: English

Supporting files: English

	Number of course slots (1h)	Number of course slots (1h)
Magisterial	36	
Problem based learning (PBL)	14	

Description

- Advanced concepts of polymerization reaction engineering are pursued in this course. Especially non-linear polymers (and the main mechanisms leading to branched and croslinked polymers) are addressed in the modeling of the most used polymerization techniques (coordination and free-radical polymerization)
- Emulsion polymerization and related disperse phase polymerization techniques are studied in detail.

Outline

Part 1: Introduction to polymerization reactors and polymer reaction engineering

Microstructural features of polymers and their effect on properties Classes of polymerizations Polymerization techniques Main commercial polymers

Part 2: Coordination polymerization

Polymerization kinetics for multiple site catalysts Copolymerization Long-chain branching Inter- and intraparticle mass and heat transfer Particle fragmentation and morphology control

Single particle models: inter- and intraparticle mass and heat transfer

Part 3: Free-radical polymerization: Homogeneous systems

Free radical polymerization mechanism and kinetics: non-linear polymers Inter- intramolecular chain transfer to polymer

Double Master in Polymer Science

Propagation to pendant double bond

 β -scission

Crosslinking reactions

Kinetic and population balances for modeling MWD in non-linear polymers The method of the moments and its limitations

Copolymerization in batch and semibatch reactors

Monomer Feeding Strategies

Part 4: Free-radical polymerization: Heterogeneous systems

Introduction

High-impact polystyrene (HIPS)

Polyvinylchloride (PVC) bulk polymerization

Part 5 : Emulsion polymerization

Introduction: Review of physical description and compartmentalization importance Kinetics of emulsion polymerization

Polymerization rate

Average number of radicals per particle, \bar{n} : entry, exit and termination Monomer partitioning in different phases

Stability of polymer colloids: DLVO theory

Particle nucleation: homogeneous, heterogeneous and coagulative

Modeling molar mass distribution: pragmatic approaches

Related processes:

Inverse emulsion polymerization

Miniemulsion polymerization

Microemulsion polymerization

Dispersion polymerization

Part 6: Step-growth polymerization

Polymerization kinetics and modeling

Industrial step-growth products

PET production process and modeling

Problem based learning (PBL)

université

Part 3 is taught using a *Problem based learning* methodology where the students learn the fundamentals of free-radical homo and copolymerization in batch and semibatch reactors using a simulation software package (Predici©) to understand the effect of important mechanisms and process variables in the properties of the (co)polymers (composition and molar mass distribution).

